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ABSTRACT
In this study, we investigate online Bayesian estimation of the
measurement noise density of a given state space model us-
ing particle filters and Dirichlet process mixtures. Dirichlet
processes are widely used in statistics for nonparametric den-
sity estimation. In the proposed method, the unknown noise
is modeled as a Gaussian mixture with unknown number of
components. The joint estimation of the state and the noise
density is done via particle filters. Furthermore, the number
of components and the noise statistics are allowed to vary in
time. An extension of the method for the estimation of time
varying noise characteristics is also introduced.

Index Terms— Particle Filtering, Dirichlet Process,
Bayesian Estimation, Adaptive filtering, Marginalized Par-
ticle Filters.

1. INTRODUCTION

The use of particle filters under the model uncertainties has
been an open problem over a decade in the field. The joint
task of estimating the model unknowns and the hidden state
within the same context makes the problem difficult to han-
dle. When the uncertainties are limited to exist in the noise
terms driving the model, more can be done by utilizing some
statistical methods. In our previous work [1] we investigated
the estimation of unknown additive Gaussian noise parame-
ters, where the marginalization for the unknowns were made
possible by using conjugate family of distributions. In this
study, we aim to extend our previous work to the mixture
of Gaussians for the measurement noise. Noise density esti-
mation using finite Gaussian mixture model has been studied
e.g., [2]. However in [2], the order selection problem is unre-
solved and the batch inference is done via Gibbs sampling. In
our study we use Dirichlet Process (DP) based model which
avoids the order selection problem, and do the inference with
particle filters in an online fashion. Similar studies involving
particle filters and DP have been addressed in [3],[4]. In [3]
the system of interest is assumed to be linear. Both of these
methods require explicit sampling of the mean and the covari-
ance. In our formulation, sampling for the noise parameters is
avoided. Instead we keep the sufficient statistics of the noise
parameters and marginalize over them to make inference over
discrete variables, which results in a more efficient scheme. It
is stated in [3] that, sampling of the mean and the covariance
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in Rao-Blackwellised particle filter framework has the prob-
lem of moving the cluster parameters. In our method, making
the inference over the discrete cluster variables, and the use
of the exponential forgetting factor on the statistics help to
circumvent this problem.

The rest of the paper is organized as follows. In Section 2,
we introduce some necessary background information. Sec-
tions 3 and 4 give the problem definition and the methodology
followed for the solution. Later the extensions of the proposed
algorithm is mentioned and finally the simulation results and
conclusions are given.

2. BACKGROUND

2.1. Dirichlet Process Mixtures

Dirichlet Processes are widely used in statistics for classifi-
cation and mixture density estimation applications where the
number of clusters or the mixture components is unknown a
priori. Because of the space limitations, we will give a brief
introduction to DP here. The interested readers are referred
to [5][3][6]. The formulation given in [3] and [6] is relevant
to our framework. Dirichlet Process Mixture(DPM) defines a
Hierarchical nonparametric Bayesian model for the unknown
probability distributions. The clustering property of Dirichlet
Processes is well suited in the context of mixture density es-
timation where each cluster corresponds to a mixture compo-
nent of the unknown probability density function. For an un-
known distribution F (.) the following nonparametric model
is used.

F (x) =

∫
f(x|θ)dG(θ) (1)

where G ∼ DP (G0, α) and f(x|θ) is a kernel having the
parameters θ. The Dirichlet Process Mixture (DPM) model
defines the following hierarchical Bayesian structure.

G ∼ DP (G0, α) (2)

θi|G ∼ G (3)

yi|θi ∼ f(.|θi) (4)

where yi’s are considered to be the samples from a mixture,
and the mixing distribution G is following a DP prior.

2.2. Normal-Inverse Wishart priors

The use of conjugate priors is essential in our formulation. We
aim to integrate out many of the parameters in the model and
make the inference over the discrete variables and the hidden
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state. For this reason, we use a Normal-inverse-Wishart dis-
tribution as our base distribution G0. For multivariate Normal
data z of dimension d, with unknown mean μ and covariance
Σ, a Normal-inverse-Wishart distribution defines a conjugate
prior. Let us denote it as [μ,Σ] ∼ NiW(ν, V ). Assuming a
Normal-inverse-Wishart distribution as a prior defines a hier-
archical Bayesian model given below:

z ∼ N (μ,Σ), μ|Σ ∼ N (μ̂, Σ̂), Σ ∼ iW(ν − d,Λ) (5)

where iW(.) denotes the Inverse Wishart distribution. The
parameters ν and V represent the sufficient statistics and can
be updated recursively. The relevant quantities are defined as,

μ̂ = V −1
11 V1z, (6)

Σ̂ = V −1
11 Σ, (7)

Λ = Vzz − V1zV
−1
11 Vz1, (8)

V =

(
Vzz V1z

Vz1 V11

)
, (9)

where d denotes the dimension of measurement vector z,
then Vzz is defined as the upper-left d × d sub-block of

V ∈ R
(d+1)×(d+1)

Via conjugacy, the posterior distribution is again a normal-
inverse-Wishart distribution with updated statistics. The up-
date equations of the statistics are as follows,

V̄ = V +

(
z
1

)(
zT 1

)
=

(
Vzz Vz1

V1z V11

)
(10a)

ν̄ = ν + 1 (10b)

Furthermore, the predictive distribution for z becomes a t-
distribution for a NiW prior.

p(z|ν, V ) = tν−d+1

(
μ,

(1 + V11)

(ν − d+ 1)V11
Λ

)
(11)

where μ and Λ are computed according to (6) and (8). tv(μ, ζ)
is the multivariate student-t distribution with v degrees of
freedom, located at μ with scale parameter ζ.

3. PROBLEM FORMULATION

Consider the following nonlinear discrete time state space
model describing the dynamics of the hidden state xt and its
relation with the observation yt

xt = ft(xt−1) + vt (12)

yt = ht(xt) + wt (13)

Here t denotes the time index. f(.) and h(.) are possibly non-
linear functions of the state vector xt. vt is Gaussian process
noise with known mean and covariance. wt is the measure-
ment noise having an unknown noise distribution Gw. We
will use a DPM model for the unknown noise distribution

such that,

Gw ∼DP (G0, α) (14)

θt|Gw ∼Gw (15)

wt|θt ∼N (μt,Σt) (16)

Where θt = (μt,Σt) is the mean and the covariance of the
cluster.

We aim to establish an algorithm which is capable of es-
timating online the hidden state xt as well as the unknown
noise distribution including its variation in time. This indeed
is a very difficult problem as it is hard to find a flexible algo-
rithm which can adopt to changes in the noise statistics while
the ambiguity in the unobserved state is inherent. The main
difficulty of the problem arises from the fact that the estima-
tion of the hidden state also depends on the unknown noise
statistics. Therefore the joint estimation of the unobserved
state and the noise statistics is required.

4. METHODOLOGY

In order to obtain analytical substructures which are essential
for marginalization of the joint density, we utilize the cluster
variables or labels. We assume that the measurement noise
term wt in (13) is i.i.d. according to a mixture density and the
cluster variables ct is defined for each measurement yt indi-
cating the specific component of the unknown mixture from
which the noise wt is sampled from. Next, we define our
unknowns as θ̄ = [θ, c0:t] (θ denotes the mean and the covari-
ance of the mixture component). Then the target density to be
estimated becomes,

p(θ̄, x0:t|y0:t) = p(θ̄|x0:t, y0:t)p(x0:t|y0:t) (17)

= p(θ|c0:t, x0:t, y0:t).p(c0:t, x0:t|y0:t) (18)

Conditional on the measurements, their labels and the unob-
served states, the sufficient statistics of θ can be computed
analytically. Here we will make use of a conjugate family of
distributions such that the posterior density of the parameters
of the specific component of the mixture p(θ|c0:t, x0:t, y0:t)
will follow normal-inverse Wishart distribution. Moreover, in
the measurement likelihood computations we will fully make
use of the underlying conjugacy by integrating out the cluster
parameters θ’s and use the student-t as the predictive distri-
bution. The inference is done by approximating the nonlinear
state x0:t and the cluster variables c0:t by particles. The joint
density we want to approximate with particles, which appears
as the second factor in (18), admits the following recursion.

p(ξ0:t|y0:t) � p(c0:t, x0:t|y0:t) (19)

= p(ξ0:t−1|y0:t−1)
p(yt|y0:t−1, ξ0:t)p(ξt|ξ0:t−1)

p(yt|y0:t−1)
(20)

The prior distribution of the cluster variables and the state can
be factorized as follows,

p(c0:t, x0:t) =
t∏

k=1

p(ck|c0:k−1)
t∏

k=1

p(xk|xk−1). (21)
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If the approximation at time t− 1 is available as the particles

{ξ(i)t−1}Ni=1, {w(i)
t−1}Ni=1 and the weights can be updated as,

w
(i)
t = w

(i)
t−1

p(yt|y0:t−1, x
(i)
0:t, c

(i)
0:t)p(x

(i)
t |x(i)

t−1)p(c
(i)
t |c(i)0:t−1)

q(c
(i)
t |c(i)0:t−1, yt)q(x

(i)
t |x(i)

t−1, yt)
(22)

Each particle, will hold the sufficient statistics of its clus-
ters, and the measurement likelihood will be computed using
the sufficient statistics. Algorithm iterations are given as a

pseudo-code at the end of the section. The p(c
(i)
t |c(i)0:t−1) will

be in accordance with the famous Chinese Restaurant Process
induced by the DP.

p(cn+1 = cj |c1, c2, ..., cn) =
ncj∑

i nci + α
(23)

p(cn+1 = cnew|c1, c2, ..., cn) = α∑
i nci + α

(24)

where cj is the label of one of the existing clusters that ap-
peared in the set θ1, θ2, .., θn and cnew is to be the label for
a new cluster, nci is the number of measurements previously
assigned to cluster ci. In the measurement likelihood compu-
tation, the unknown parameters of the noise can be integrated
out such that,

p(yt|y0:t−1, x
(i)
0:t, c

(i)
0:t) =

∫
p(yt|θt)p(θt|y0:t−1, x

(i)
0:t, c

(i)
0:t)dθt.

(25)

The posterior distribution of p(θt|y0:t−1, x
(i)
0:t, c

(i)
0:t) will fol-

low and NiW distribution whose sufficient statistics can be
computed through the given conditions. Then the integral
above will be the student t distribution as in (11)

It is possible to explore the full support of p(ct|c0:t−1)
as it takes a finite number of discrete values for each particle
[7]. Then the particles having the N-best weights can be kept
through the next step. Resampling still can be done if neces-
sary. In the simulations, 100- best particles are kept at each
time step.

4.1. Time varying noise distribution

4.1.1. Exponential forgetting

In order to adapt the changes in the noise distribution, it is
possible to utilize the principle of forgetting in updating the
noise statistics. The simplest form is known as exponen-
tial forgetting, where the update equations (10a)-(10b) are re-
placed by

V̄ = λV +

(
z
1

)(
zT 1

)
, ν̄ = λν + 1. (26)

where the forgetting factor 0 ≤ λ ≤ 1 is a scalar real number.
The use of this operation correspond to application of expo-
nential window with effective length h = 1

1−λ . The statistics

relies on roughly the measurements within last h frames/time
instances. That allows the algorithm to adapt the changes in

• Iterations:

• For t = 1, 2, . . . do

– For each particle i = 1, .., N do

∗ sample x
(i)
t ∼ q(x

(i)
t |yt, x(i)

t−1)

∗ sample c
(i)
t ∼ q(c

(i)
t |yt, c(i)0:t−1, x

(i)
t )

– For i = 1, .., N , update the weights

w
(i)
t =

w
(i)
t−1

p(yt|y0:t−1, x
(i)
0:t, c

(i)
0:t)p(x

(i)
t |x(i)

t−1)p(c
(i)
t |c(i)0:t−1)

q(c
(i)
t |c(i)0:t−1, yt)q(x

(i)
t |x(i)

t−1, yt)

– Update statistics of the noise, using the pseudo mea-

surements in z
(i)
t = yt − ht(x

(i)
t ) with the equations

(10a)-(10b).

– Normalize weights, ω
(i)
t =

w̃
(i)
t∑N

i=1 w̃
(i)
t

.

– Compute Neff =
1∑N

i=1(ω
(i)
t )2

.

∗ If Neff ≤ η, Resample the particles, and set

ω
(i)
t = 1/N .

the noise statistics in time.

4.1.2. r-order Markov model

In order to track the changes in the number of components of
the unknown noise distribution, we condition the prior prob-
abilities of the cluster variables in a sliding window fashion.
In that case the probabilities in (23) and (24) are computed
by considering the values of the cluster variables for the last
r time steps, ct−r:t instead of the whole past values c0:t i.e.,
p(ct|c0:t−1) ≈ p(ct|ct−r:t−1) . The clusters which have not
been updated for the last r time steps are deleted. A num-
ber of methods to extend DPM for time varying densities are
proposed in [8] which can be applied here.

5. SIMULATIONS

We use the following benchmark scalar nonlinear time series
model for our illustrations:

xt =
xt−1

2
+

25xt−1

1 + x2
t−1

+ 8 cos(1.2t) + vt, (27)

yt =
x2
t

20
+ wt, t = 1, 2, . . . (28)

where vt ∼ N(0, 1) and wt ∼
∑Kt

i=1 πi,tN (μi,tΣi,t). Here,
the measurement noise distribution is changed every 500 time
steps. Figure 1 and Figure 2 illustrate the variation of the true
noise density and the estimated noise density in time. Fig-
ure 3 shows the slices of the same result for a single time
step explicitly showing estimated and the true noise densi-
ties. The relevant marginalizations in the formulation results
an efficient algorithm such that only 100 particles with high-
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est weights are kept at each time step throughout the simula-
tion. NiW distribution is used as the base distribution G0 and

the initial parameters are set to [ν0, V0] = [(5,

(
15 0
0 1

)
)].

Other variables are, α = 2, forgetting factor λ = 0.98, and
the order of Markov model r = 30. The transition density
p(xt|xt−1) is used as the importance density while sampling
xt.

6. CONCLUSION

A novel algorithm is proposed for noise density estimation
in nonlinear models. DPM, which defines flexible priors to
estimate the unknown number of components in the mixtures,
are utilized for the unknown distribution of the noise. The
inference is done via particle filters and the estimation of the
unknowns are made online. Time varying extension of the
method is also provided. The performance of the algorithm is
illustrated on a numeric example.
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Fig. 1. Variation of true noise density in time.

Fig. 2. The estimated noise density.
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Fig. 3. True and estimated noise densities at different time

steps.
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